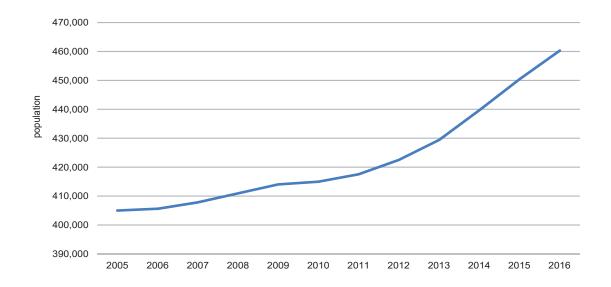
National Statistics Office Malta (2018): Life table 2016, in Population Statistics (Revisions): 2012-2016, in News Release, 12 February 2018. Downloaded from https://nso.gov.mt/ (17.12.2018).

W/S RFLFAS


12 February 2018 | 1100 hrs | 022/2018

In 2017, benchmark revisions were undertaken for the estimation of migration flows. National methodologies and data sources were reviewed and updated leading to a revision of the time-series data on population counts from 2012-2016.

Population Statistics (Revisions): 2012-2016

Methodological improvements have led to the revision of migration flow data for European Union (EU) and regular Third Country Nationals (TCN) migrants for the period 2012-2016 (Table 1). In turn, the total and foreign population counts for the time series 2012-2016 have also been revised. The total resident population as at 31 December 2016 stands at 460,297. The share of the total population that is foreign is 11.8 per cent (Table 2).

Chart 1. End-of-year total population estimates: 2005-2016

Detailed revised tables for reference years 2012-2016 can be downloaded in the accompanying annex of tables in excel format included with this release. Users of this data are also encouraged to refer to methodological notes for further details on the revision exercise. In line with the revisions presented in this release, the StatDB online database will be updated with revised data as from 12/02/2018.

The remainder of this release will refer to data pertaining to reference year 2016.

Table 5. Complete life table: 2016 ...

Age	Males		Females		Total	
	I _x	°e _x	I _x	°e _x	l _x	°e _x
0	10,000	80.6	10,000	84.4	10,000	82.6
1	9,916	80.3	9,941	83.9	9,928	82.2
2	9,912	79.3	9,936	82.9	9,924	81.2
3	9,912	78.3	9,936	81.9	9,924	80.2
4	9,912	77.3	9,936	80.9	9,924	79.2
5	9,912	76.3	9,936	79.9	9,924	78.2
6	9,907	75.4	9,936	78.9	9,921	77.2
7	9,907	74.4	9,936	77.9	9,921	76.2
8	9,907	73.4	9,936	76.9	9,921	75.2
9	9,907	72.4	9,936	75.9	9,921	74.2
10	9,907	71.4	9,936	74.9	9,921	73.2
11	9,907	70.4	9,936	73.9	9,921	72.2
12	9,907	69.4	9,936	72.9	9,921	71.2
13	9,907	68.4	9,932	72.0	9,919	70.2
14	9,907	67.4	9,932	71.0	9,919	69.2
15	9,907	66.4	9,932	70.0	9,919	68.2
16	9,907	65.4	9,932	69.0	9,919	67.2
17	9,907	64.4	9,923	68.0	9,915	66.3
18	9,903	63.4	9,918	67.1	9,910	65.3
19	9,892	62.5	9,918	66.1	9,904	64.3
20	9,892	61.5	9,914	65.1	9,902	63.3
21	9,888	60.5	9,911	64.1	9,899	62.4
22	9,885	59.5	9,911	63.1	9,897	61.4
23	9,882	58.5	9,907	62.1	9,894	60.4
24	9,882	57.5	9,907	61.1	9,894	59.4
25	9,882	56.5	9,907	60.1	9,894	58.4
26	9,877	55.6	9,907	59.1	9,891	57.4
27	9,871	54.6	9,907	58.1	9,888	56.4
28	9,866	53.6	9,904	57.2	9,884	55.5
29	9,861	52.7	9,904	56.2	9,882	54.5
30	9,856	51.7	9,904	55.2	9,879	53.5
31	9,856	50.7	9,904	54.2	9,879	52.5
32	9,853	49.7	9,901	53.2	9,876	51.5
33	9,848	48.7	9,901	52.2	9,873	50.5
34	9,845	47.7	9,890	51.2	9,866	49.6
35	9,840	46.8	9,890	50.2	9,864	48.6
36	9,831	45.8	9,884	49.3	9,856	47.6
37	9,815	44.9	9,881	48.3	9,846	46.6
38	9,807	43.9	9,869	47.3	9,836	45.7
39	9,795	43.0	9,853	46.4	9,823	44.8
40	9,784	42.0	9,844	45.5	9,812	43.8
41	9,758	41.1	9,841	44.5	9,798	42.9
42	9,749	40.2	9,831	43.5	9,788	41.9
43	9,743	39.2	9,831	42.5	9,785	40.9
44	9,737	38.2	9,831	41.5	9,782	39.9

... Table 5. Complete life table: 2016

Age	Males		Females		Total	
	l _x	°e _x	l _x	°e _x	l _x	°e _x
45	9,733	37.2	9,828	40.5	9,778	39.0
46	9,713	36.3	9,806	39.6	9,758	38.0
47	9,696	35.4	9,802	38.6	9,747	37.1
48	9,675	34.4	9,787	37.7	9,728	36.1
49	9,660	33.5	9,760	36.8	9,708	35.2
50	9,638	32.6	9,753	35.8	9,693	34.3
51	9,588	31.7	9,738	34.9	9,660	33.4
52	9,558	30.8	9,720	33.9	9,636	32.5
53	9,528	29.9	9,706	33.0	9,614	31.5
54	9,490	29.0	9,689	32.0	9,586	30.6
55	9,438	28.2	9,667	31.1	9,548	29.8
56	9,399	27.3	9,623	30.3	9,507	28.9
57	9,327	26.5	9,574	29.4	9,447	28.1
58	9,294	25.6	9,550	28.5	9,418	27.1
59	9,243	24.8	9,523	27.6	9,379	26.3
60	9,197	23.9	9,511	26.6	9,349	25.3
61	9,140	23.0	9,479	25.7	9,305	24.5
62	9,073	22.2	9,447	24.8	9,255	23.6
63	9,016	21.3	9,394	23.9	9,200	22.7
64	8,972	20.4	9,355	23.0	9,158	21.8
65	8,854	19.7	9,294	22.1	9,068	21.0
66	8,775	18.9	9,240	21.3	9,002	20.2
67	8,658	18.1	9,164	20.4	8,905	19.4
68	8,552	17.3	9,081	19.6	8,810	18.6
69	8,428	16.6	8,993	18.8	8,705	17.8
70	8,326	15.8	8,924	18.0	8,619	17.0
71	8,145	15.1	8,825	17.2	8,479	16.3
72	8,004	14.4	8,722	16.3	8,358	15.5
73	7,838	13.7	8,585	15.6	8,206	14.8
74	7,664	13.0	8,469	14.8	8,062	14.0
75	7,498	12.2	8,325	14.1	7,908	13.3
76	7,308	11.6	8,199	13.3	7,752	12.6
77	7,045	11.0	8,035	12.5	7,541	11.9
78	6,823	10.3	7,870	11.8	7,349	11.2
79	6,601	9.6	7,673	11.1	7,142	10.5
80	6,340	9.0	7,440	10.4	6,896	9.9
81	6,019	8.5	7,159	9.8	6,598	9.3
82	5,669	8.0	6,912	9.1	6,306	8.7
83	5,360	7.4	6,532	8.6	5,961	8.2
84	4,960	6.9	6,090	8.2	5,542	7.7
85+	4,539	6.5	5,678	7.8	5,132	7.3

The column I_x shows, for each sex, the number of persons who would survive to exact age x out of 10,000 born who were subject throughout their lives to the recorded age death rates of the period. Column ${}^{o}e_x$ is the 'expectation of life', that is the average remaining lifetime for a person who survives at the beginning of the indicated age interval, if likewise subject to those death rates.